Ученые из Института сильноточной электроники СО РАН с помощью тлеющего разряда атмосферного давления получили ультрадисперсные порошки оксидов магния, индия, цинка и молибдена, востребованные в биомедицине, а также при производстве полупроводников и литий-ионных аккумуляторов. Для этого была сконструирована энергоэффективная лабораторная установка, мощность которой сопоставима с мощностью обычной лампочки накаливания. Исследования выполняются при поддержке РНФ (проект № 22-19-00265).
старший научный сотрудник лаборатории оптических излучений к.ф.-м.н. Дмитрий Белоплотов, старший научный сотрудник лаборатории плазменных источников к.т.н. Константин Савкин, заведующий лабораторией оптических излучений к.ф.-м.н. наук Дмитрий Сорокин
Тлеющий разряд – это тип газового разряда, который характеризуется постоянной плотностью тока на катоде и может функционировать в атмосфере различных газов и в широком диапазоне давлений. Плазменные устройства на его основе работают в основном при пониженных давлениях, для чего требуются средства вакуумной откачки, один или два насоса.
– Долгое время считалось, что при высоких давлениях, близких к атмосферному, этот тип разряда реализовать практически невозможно, так как из формы тлеющего разряда он перейдет в форму дугового разряда, для которого характерны совершенно другие механизмы эмиссии электронов с катода, а также происходит интенсивная эрозия электродов. Новизна нашей работы заключается в том, что, оставаясь все время в режиме тлеющего разряда при атмосферном давлении, можно получать не только газовую плазму, но и плазму, содержащую ионы и атомы металлов, – рассказывает руководитель проекта, старший научный сотрудник лаборатории плазменных источников ИСЭ СО РАН кандидат технических наук Константин Савкин.
Старший научный сотрудник лаборатории плазменных источников ИСЭ СО РАН к.т.н. Константин Савкин
Серия экспериментов по генерации ионов и атомов металлов в тлеющем разряде при атмосферном давлении была проведена на специальной установке, созданной совместно с коллегами из лаборатории оптических излучений, где имеются быстродействующие устройства для регистрации оптического излучения с высоким временным и пространственным разрешением.
Разрядная камера, являющаяся основой установки, оснащена специальным катодом, который выполняет роль тигля, куда как в крошечный сосуд закладывается стружка металла (рабочее тело), атомы которого планируется получить в результате действия разряда. Катод-тигель и рабочее тело помещаются во внутренний объем разрядной камеры, продуваемый инертным газом (гелий или аргон) при атмосферном давлении. При горении разряда вблизи поверхности катода-тигля создаются такие тепловые условия, при которых заложенный в него материал начинает плавиться, чуть-чуть выступая из катода-тигля вследствие расширения его объема. В результате тонкий слой паров материала, содержащий атомы металла, увлекается потоком инертного газа.
Этот атомарный поток поступает в плазму, меняя характеристики ее оптического излучения. Например, возбужденные в плазме атомы магния светят насыщенным зеленым, а цинк излучает красивым ярко-синим цветом. Далее атомы выносятся в окружающую атмосферу за пределы разрядной камеры через отверстие в аноде. В воздухе происходит их окисление, и формируются наночастицы оксидов металлов размером от нескольких единиц до нескольких десятков нанометров, которые затем слипаются в более крупные хлопья нанопорошка.
Форма и элементный состав ультрадисперсных нанопорошков зависят от сорта рабочего газа и металла, закладываемого в катод-тигель. Так, порошки оксидов магния состоят из частиц, представляющих собой гексагональные пластины размером от нескольких единиц до нескольких десятков нанометров. Частицы оксида цинка имеют вытянутую форму в виде «нано-иголок» или «нано-ремней» с длиной до 200 нанометров. Наночастицы оксида индия представляет собой кубики размером от 7 до 23 нанометров. Такие кубики могут объединяться с другими в протяженные кристаллы, своеобразные «нано-усы» длиной до 1 миллиметра и диаметром 15 нанометров.
Такие нанопорошки востребованы в биомедицине, их добавляют в биоразлагаемые полимеры при создании композитных материалов для наращивания костных тканей. Они используются при производстве полупроводников: оксид магния является отличным термостойким изолятором, а оксиды цинка и индия – широкозонными проводниками, применяемыми в качестве датчиков излучения и состава газовой среды. В 2024 году ученым удалось получить порошки оксида тугоплавкого металла – молибдена. Спектр их применения весьма широк: они способны подавлять рост раковых клеток, а также востребованы в составе анодов литий-ионных аккумуляторов, при создании датчиков оптического излучения и химического состава газовых сред.